# Is polynomial interpolation in the monomial basis unstable?

Zewen Shen, Kirill Serkh

University of Toronto

May 2023

## Polynomial interpolation

Polynomials are powerful tools for approximating functions.

#### Polynomial interpolation

Polynomials are powerful tools for approximating functions.

#### Definition

Given a function  $F: [-1,1] \to \mathbb{C}$ , the Nth degree interpolating polynomial  $P_N$  of F satisfies  $P_N(x_j) = F(x_j)$ , for a set of (N+1) distinct collocation points  $\{x_j\}_{j=0,1,\dots,N}$ .

#### Polynomial interpolation

Polynomials are powerful tools for approximating functions.

#### Definition

Given a function  $F: [-1,1] \to \mathbb{C}$ , the Nth degree interpolating polynomial  $P_N$  of F satisfies  $P_N(x_j) = F(x_j)$ , for a set of (N+1) distinct collocation points  $\{x_j\}_{j=0,1,\ldots,N}$ .

The choice of collocation points matters. In this talk, we only consider collocation points with a small Lebesgue constant (e.g., Chebyshev points).

To compute  $P_N$  on a computer, we first choose a polynomial basis  $\{\phi_k\}_k$ 

$$P_N(x) = \sum_{k=0}^N a_k \phi_k(x)$$

To compute  $P_N$  on a computer, we first choose a polynomial basis  $\{\phi_k\}_k$ 

$$P_{N}(x) = \sum_{k=0}^{N} a_{k} \phi_{k}(x)$$

$$\begin{pmatrix} \phi_{0}(x_{0}) & \phi_{1}(x_{0}) & \phi_{2}(x_{0}) & \cdots & \phi_{N}(x_{0}) \\ \phi_{0}(x_{1}) & \phi_{1}(x_{1}) & \phi_{2}(x_{1}) & \cdots & \phi_{N}(x_{1}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi_{0}(x_{N}) & \phi_{1}(x_{N}) & \phi_{2}(x_{N}) & \cdots & \phi_{N}(x_{N}) \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{N} \end{pmatrix} = \begin{pmatrix} F(x_{0}) \\ F(x_{1}) \\ \vdots \\ F(x_{N}) \end{pmatrix}.$$

To compute  $P_N$  on a computer, we first choose a polynomial basis  $\{\phi_k\}_k$ 

$$P_{N}(x) = \sum_{k=0}^{N} a_{k} \phi_{k}(x)$$

$$\begin{pmatrix} \phi_{0}(x_{0}) & \phi_{1}(x_{0}) & \phi_{2}(x_{0}) & \cdots & \phi_{N}(x_{0}) \\ \phi_{0}(x_{1}) & \phi_{1}(x_{1}) & \phi_{2}(x_{1}) & \cdots & \phi_{N}(x_{1}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi_{0}(x_{N}) & \phi_{1}(x_{N}) & \phi_{2}(x_{N}) & \cdots & \phi_{N}(x_{N}) \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{N} \end{pmatrix} = \begin{pmatrix} F(x_{0}) \\ F(x_{1}) \\ \vdots \\ F(x_{N}) \end{pmatrix}.$$

Why does the choice of basis matter?

To compute  $P_N$  on a computer, we first choose a polynomial basis  $\{\phi_k\}_k$ 

$$P_{N}(x) = \sum_{k=0}^{N} a_{k} \phi_{k}(x)$$

$$\begin{pmatrix} \phi_{0}(x_{0}) & \phi_{1}(x_{0}) & \phi_{2}(x_{0}) & \cdots & \phi_{N}(x_{0}) \\ \phi_{0}(x_{1}) & \phi_{1}(x_{1}) & \phi_{2}(x_{1}) & \cdots & \phi_{N}(x_{1}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi_{0}(x_{N}) & \phi_{1}(x_{N}) & \phi_{2}(x_{N}) & \cdots & \phi_{N}(x_{N}) \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{N} \end{pmatrix} = \begin{pmatrix} F(x_{0}) \\ F(x_{1}) \\ \vdots \\ F(x_{N}) \end{pmatrix}.$$

Why does the choice of basis matter?

- Condition number
- Time complexity

To compute  $P_N$  on a computer, we first choose a polynomial basis  $\{\phi_k\}_k$ 

$$P_{N}(x) = \sum_{k=0}^{N} a_{k} \phi_{k}(x)$$

$$\begin{pmatrix} \phi_{0}(x_{0}) & \phi_{1}(x_{0}) & \phi_{2}(x_{0}) & \cdots & \phi_{N}(x_{0}) \\ \phi_{0}(x_{1}) & \phi_{1}(x_{1}) & \phi_{2}(x_{1}) & \cdots & \phi_{N}(x_{1}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi_{0}(x_{N}) & \phi_{1}(x_{N}) & \phi_{2}(x_{N}) & \cdots & \phi_{N}(x_{N}) \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{N} \end{pmatrix} = \begin{pmatrix} F(x_{0}) \\ F(x_{1}) \\ \vdots \\ F(x_{N}) \end{pmatrix}.$$

Why does the choice of basis matter?

- Condition number
- Time complexity

The standard choices:

- Lagrange polynomials.
- Orthogonal polynomials (Chebyshev, Legendre, etc).

#### Polynomial interpolation in the monomial basis

What about expressing  $P_N$  in the monomial basis?

$$P_N(x) = \sum_{k=0}^N a_k x^k$$

The previous linear system becomes

$$\underbrace{\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^N \\ 1 & x_1 & x_1^2 & \cdots & x_1^N \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_N & x_N^2 & \cdots & x_N^N \end{pmatrix}}_{V^{(N)}} \underbrace{\begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_N \end{pmatrix}}_{a_0^{(N)}} = \underbrace{\begin{pmatrix} F(x_0) \\ F(x_1) \\ \vdots \\ F(x_N) \end{pmatrix}}_{f^{(N)}}.$$

 $V^{(N)}$  is known as a Vandermonde matrix.

#### Monomial basis is ill-conditioned

Given any set of real collocation points,  $\kappa(V^{(N)})$  grows at least exponentially fast.

**Example**: when the Chebyshev points are used for collocation:



Let's run some experiments. The following quantities will be reported.

- $\|F \widehat{P}_N\|_{L^\infty([-1,1])}$ : Monomial approximation error. Denoted by the label "monomial".
- $\|F P_N\|_{L^\infty([-1,1])}$ : Exact polynomial interpolation error, estimated using the Barycentric interpolation formula. Denoted by the label "Lagrange".

Chebyshev points are used for collocation.

$$F(x) = \cos(2x + 1)$$





$$F(x) = \cos(8x + 1)$$











 Polynomial interpolation in the monomial basis is not as unstable as it appears.

- Polynomial interpolation in the monomial basis is not as unstable as it appears.
- The same thing happens when the domain is not [-1,1] (say, a triangle in  $\mathbb{R}^2$ ).

- Polynomial interpolation in the monomial basis is not as unstable as it appears.
- The same thing happens when the domain is not [-1,1] (say, a triangle in  $\mathbb{R}^2$ ).
- The observation that "the monomials can approximate sufficiently smooth functions to high accuracy" dates back to  $\geq$  25 years ago.

- Polynomial interpolation in the monomial basis is not as unstable as it appears.
- The same thing happens when the domain is not [-1,1] (say, a triangle in  $\mathbb{R}^2$ ).
- The observation that "the monomials can approximate sufficiently smooth functions to high accuracy" dates back to  $\geq$  25 years ago.
- Not very widely known. Not fully understood. Not the complete story.

- Polynomial interpolation in the monomial basis is not as unstable as it appears.
- The same thing happens when the domain is not [-1,1] (say, a triangle in  $\mathbb{R}^2$ ).
- The observation that "the monomials can approximate sufficiently smooth functions to high accuracy" dates back to  $\geq$  25 years ago.
- Not very widely known. Not fully understood. Not the complete story.

The monomial basis is not too different from a well-conditioned polynomial basis for interpolation, provided that  $\kappa(V^{(N)}) \leq \frac{1}{u}$ .

- Polynomial interpolation in the monomial basis is not as unstable as it appears.
- The same thing happens when the domain is not [-1,1] (say, a triangle in  $\mathbb{R}^2$ ).
- The observation that "the monomials can approximate sufficiently smooth functions to high accuracy" dates back to  $\geq$  25 years ago.
- Not very widely known. Not fully understood. Not the complete story.

The monomial basis is not too different from a well-conditioned polynomial basis for interpolation, provided that  $\kappa(V^{(N)}) \leq \frac{1}{\mu}$ .

Before I explain why, I'll present an application.

Complicated irregular domains appear in many applications.

Complicated irregular domains appear in many applications.

Well-conditioned polynomial bases over unstructured mesh elements are generally either unknown or complicated.

Complicated irregular domains appear in many applications.

Well-conditioned polynomial bases over unstructured mesh elements are generally either unknown or complicated.

• What are orthogonal polynomials over an arbitrary curved triangle?

Complicated irregular domains appear in many applications.

Well-conditioned polynomial bases over unstructured mesh elements are generally either unknown or complicated.

- What are orthogonal polynomials over an arbitrary curved triangle?
- Orthogonal polynomials over a standard simplex:

$$K_{mn}(x,y) = (1-x)^m \cdot P_{n-m}^{(2m+1,0)}(2x-1) \cdot P_m\left(\frac{2y}{1-x}-1\right).$$

Complicated irregular domains appear in many applications.

Well-conditioned polynomial bases over unstructured mesh elements are generally either unknown or complicated.

- What are orthogonal polynomials over an arbitrary curved triangle?
- Orthogonal polynomials over a standard simplex:

$$K_{mn}(x,y) = (1-x)^m \cdot P_{n-m}^{(2m+1,0)}(2x-1) \cdot P_m\left(\frac{2y}{1-x}-1\right).$$

• What about tetrahedrons?

Complicated irregular domains appear in many applications.

Well-conditioned polynomial bases over unstructured mesh elements are generally either unknown or complicated.

- What are orthogonal polynomials over an arbitrary curved triangle?
- Orthogonal polynomials over a standard simplex:

$$K_{mn}(x,y) = (1-x)^m \cdot P_{n-m}^{(2m+1,0)}(2x-1) \cdot P_m\left(\frac{2y}{1-x}-1\right).$$

• What about tetrahedrons?

On the other hand, the monomial basis works for any domain, is extremely handy, and is much cheaper to evaluate.

#### Rethinking interpolation

Huge condition number of Vandermonde matrices  $\Longrightarrow$  extremely inaccurate monomial coefficients

Do we care about the accuracy of the computed monomial coefficients?

#### Rethinking interpolation

Huge condition number of Vandermonde matrices ⇒
extremely inaccurate monomial coefficients

Do we care about the accuracy of the computed monomial coefficients? What's really important is the backward error, i.e.,

$$\|V^{(N)}\widehat{a}^{(N)}-f^{(N)}\|_{2},$$

of the numerical solution  $\widehat{a}^{(N)}$  to the Vandermonde system  $V^{(N)}a^{(N)}=f^{(N)}$ .

#### Rethinking interpolation

The difference between the exact interpolating polynomial  $P_N$  and the computed monomial expansion  $\widehat{P}_N$  satisfies

$$\|P_N - \widehat{P}_N\|_{L^{\infty}(\Gamma)} \leq \Lambda_N \|V^{(N)} \widehat{a}^{(N)} - f^{(N)}\|_2.$$

### Rethinking interpolation

The difference between the exact interpolating polynomial  $P_N$  and the computed monomial expansion  $\widehat{P}_N$  satisfies

$$\|P_N - \widehat{P}_N\|_{L^{\infty}(\Gamma)} \leq \Lambda_N \|V^{(N)} \widehat{a}^{(N)} - f^{(N)}\|_2.$$

How large will the backward error be?

### Backward stable linear system solver

When a backward stable linear system solver is used to solve the Vandermonde system  $V^{(N)}a^{(N)}=f^{(N)}$ , the numerical solution  $\widehat{a}^{(N)}$  is the exact solution to

$$(V^{(N)} + \delta V^{(N)})\hat{a}^{(N)} = f^{(N)},$$

for some  $\delta V^{(N)} \in \mathbb{C}^{(N+1)\times (N+1)}$  that satisfies

$$\|\delta V^{(N)}\|_2 \leq u \cdot \gamma_N,$$

where u denotes machine epsilon and  $\gamma_N = \mathcal{O}(\|V^{(N)}\|_2)$ .

### Backward stable linear system solver

When a backward stable linear system solver is used to solve the Vandermonde system  $V^{(N)}a^{(N)}=f^{(N)}$ , the numerical solution  $\widehat{a}^{(N)}$  is the exact solution to

$$(V^{(N)} + \delta V^{(N)})\hat{a}^{(N)} = f^{(N)},$$

for some  $\delta V^{(N)} \in \mathbb{C}^{(N+1)\times (N+1)}$  that satisfies

$$\|\delta V^{(N)}\|_2 \leq u \cdot \gamma_N$$

where u denotes machine epsilon and  $\gamma_N = \mathcal{O}(\|V^{(N)}\|_2)$ .

**Remark**: When MATLAB's backslash is used, we observe that  $\gamma_N \lesssim 1$  for at least  $N \leq 100$ .

## Backward stable linear system solver

When a backward stable linear system solver is used to solve the Vandermonde system  $V^{(N)}a^{(N)}=f^{(N)}$ , the numerical solution  $\widehat{a}^{(N)}$  is the exact solution to

$$(V^{(N)} + \delta V^{(N)})\widehat{a}^{(N)} = f^{(N)},$$

for some  $\delta V^{(N)} \in \mathbb{C}^{(N+1)\times (N+1)}$  that satisfies

$$\|\delta V^{(N)}\|_2 \le u \cdot \gamma_N,$$

where u denotes machine epsilon and  $\gamma_N = \mathcal{O}(\|V^{(N)}\|_2)$ .

**Remark**: When MATLAB's backslash is used, we observe that  $\gamma_N \lesssim 1$  for at least  $N \leq 100$ .

It follows that

$$\|V^{(N)}\widehat{a}^{(N)} - f^{(N)}\|_2 = \|\delta V^{(N)}\widehat{a}^{(N)}\|_2 \le u \cdot \gamma_N \|\widehat{a}^{(N)}\|_2.$$

### A priori estimate

#### Lemma

If 
$$\|(V^{(N)})^{-1}\|_2 \leq \frac{1}{2u\cdot\gamma_N}$$
, then  $\frac{2}{3}\|a^{(N)}\|_2 \leq \|\widehat{a}^{(N)}\|_2 \leq 2\|a^{(N)}\|_2$ .

### A priori estimate

#### Lemma

If 
$$\|(V^{(N)})^{-1}\|_2 \leq \frac{1}{2u \cdot \gamma_N}$$
, then  $\frac{2}{3} \|a^{(N)}\|_2 \leq \|\widehat{a}^{(N)}\|_2 \leq 2\|a^{(N)}\|_2$ .

Therefore,

$$\|(V^{(N)})^{-1}\|_2 \leq \frac{1}{2u \cdot \gamma_N} \Longrightarrow \|V^{(N)} \widehat{a}^{(N)} - f^{(N)}\|_2 \leq 2u \cdot \gamma_N \|a^{(N)}\|_2.$$

### A priori estimate

#### Lemma

If 
$$\|(V^{(N)})^{-1}\|_2 \leq \frac{1}{2u \cdot \gamma_N}$$
, then  $\frac{2}{3} \|a^{(N)}\|_2 \leq \|\widehat{a}^{(N)}\|_2 \leq 2\|a^{(N)}\|_2$ .

Therefore,

$$\|(V^{(N)})^{-1}\|_2 \leq \frac{1}{2u \cdot \gamma_N} \Longrightarrow \|V^{(N)}\widehat{a}^{(N)} - f^{(N)}\|_2 \leq 2u \cdot \gamma_N \|a^{(N)}\|_2.$$

Corollary (Finite-precision interpolation error)

If 
$$\|(V^{(N)})^{-1}\|_2 \le \frac{1}{2u \cdot \gamma_N}$$
, then 
$$\|F - \widehat{P}_N\|_{L^{\infty}(\Gamma)} \le \|F - P_N\|_{L^{\infty}(\Gamma)} + 2u \cdot \gamma_N \Lambda_N \|a^{(N)}\|_2.$$













## Story so far

• We can now explain these experiments, but many things are still unclear.

### Story so far

- We can now explain these experiments, but many things are still unclear.
- For example, when will the extra error (i.e.,  $u \cdot ||a^{(N)}||_2$ ) be small?

## Story so far

- We can now explain these experiments, but many things are still unclear.
- For example, when will the extra error (i.e.,  $u \cdot ||a^{(N)}||_2$ ) be small?
- This requires an a priori estimate for the growth of  $\|a^{(N)}\|_2$ .

#### An important constant

Given a smooth simple arc  $\Gamma \subset \mathbb{C}$ , define  $\rho_*$  to be the parameter of the smallest Bernstein ellipse for  $\Gamma$  that contains the unit disk.

### An important constant

Given a smooth simple arc  $\Gamma \subset \mathbb{C}$ , define  $\rho_*$  to be the parameter of the smallest Bernstein ellipse for  $\Gamma$  that contains the unit disk.

#### Example

When 
$$\Gamma=[-1,1]$$
,  $ho_*=1+\sqrt{2}\approx 2.4$ 



### An important constant

Given a smooth simple arc  $\Gamma \subset \mathbb{C}$ , define  $\rho_*$  to be the parameter of the smallest Bernstein ellipse for  $\Gamma$  that contains the unit disk.

#### Example

When 
$$\Gamma=[-1,1]$$
,  $ho_*=1+\sqrt{2}\approx 2.4$ 



#### **Theorem**

Suppose that there exists a finite sequence of polynomials  $\{Q_n\}_{n=0,1,\dots,N}$ , where  $Q_n$  has degree n, which satisfies

$$||F-Q_n||_{L^{\infty}(\Gamma)} \leq C\rho_*^{-n}, \quad 0 \leq n \leq N,$$

for some constant  $C \geq 0$ . The 2-norm of the monomial coefficient vector of the Nth degree interpolating polynomial  $P_N$  of F satisfies

$$||a^{(N)}||_2 \le ||F||_{L^{\infty}(\Gamma)} + C(\Lambda_N + 2\rho_*N + 1)$$

#### **Theorem**

Suppose that there exists a finite sequence of polynomials  $\{Q_n\}_{n=0,1,\dots,N}$ , where  $Q_n$  has degree n, which satisfies

$$||F-Q_n||_{L^{\infty}(\Gamma)} \leq C\rho_*^{-n}, \quad 0 \leq n \leq N,$$

for some constant  $C \geq 0$ . The 2-norm of the monomial coefficient vector of the Nth degree interpolating polynomial  $P_N$  of F satisfies

$$\|a^{(N)}\|_2 \leq \|F\|_{L^{\infty}(\Gamma)} + C\Big(\Lambda_N + 2\rho_*N + 1\Big) \lesssim C \cdot N.$$

#### **Theorem**

Suppose that there exists a finite sequence of polynomials  $\{Q_n\}_{n=0,1,\dots,N}$ , where  $Q_n$  has degree n, which satisfies

$$||F-Q_n||_{L^{\infty}(\Gamma)} \leq C\rho_*^{-n}, \quad 0 \leq n \leq N,$$

for some constant  $C\geq 0$ . The 2-norm of the monomial coefficient vector of the Nth degree interpolating polynomial  $P_N$  of F satisfies

$$\|a^{(N)}\|_2 \leq \|F\|_{L^{\infty}(\Gamma)} + C\Big(\Lambda_N + 2\rho_*N + 1\Big) \lesssim C \cdot N.$$

In practice, one can take  $\{Q_n\}_{n=0,1,\dots,N}$  to be a finite sequence of interpolating polynomials  $\{P_n\}_{n=0,1,\dots,N}$  of F.

#### **Theorem**

Suppose that there exists a finite sequence of polynomials  $\{Q_n\}_{n=0,1,\dots,N}$ , where  $Q_n$  has degree n, which satisfies

$$||F-Q_n||_{L^{\infty}(\Gamma)} \leq C\rho_*^{-n}, \quad 0 \leq n \leq N,$$

for some constant  $C\geq 0$ . The 2-norm of the monomial coefficient vector of the Nth degree interpolating polynomial  $P_N$  of F satisfies

$$\|a^{(N)}\|_2 \leq \|F\|_{L^{\infty}(\Gamma)} + C\Big(\Lambda_N + 2\rho_*N + 1\Big) \lesssim C \cdot N.$$

In practice, one can take  $\{Q_n\}_{n=0,1,\dots,N}$  to be a finite sequence of interpolating polynomials  $\{P_n\}_{n=0,1,\dots,N}$  of F.

We first deal with the case where the  $||F - P_n||_{L^{\infty}(\Gamma)} \lesssim \rho_*^{-n}$ .

#### **Theorem**

Suppose that there exists a finite sequence of polynomials  $\{Q_n\}_{n=0,1,\ldots,N}$ , where  $Q_n$  has degree n, which satisfies

$$||F-Q_n||_{L^{\infty}(\Gamma)} \leq C\rho_*^{-n}, \quad 0 \leq n \leq N,$$

for some constant  $C\geq 0$ . The 2-norm of the monomial coefficient vector of the Nth degree interpolating polynomial  $P_N$  of F satisfies

$$\|a^{(N)}\|_2 \leq \|F\|_{L^{\infty}(\Gamma)} + C\Big(\Lambda_N + 2\rho_*N + 1\Big) \lesssim C \cdot N.$$

In practice, one can take  $\{Q_n\}_{n=0,1,\dots,N}$  to be a finite sequence of interpolating polynomials  $\{P_n\}_{n=0,1,\dots,N}$  of F.

We first deal with the case where the  $||F - P_n||_{L^{\infty}(\Gamma)} \lesssim \rho_*^{-n}$ .

$$||a^{(N)}||_2 \lesssim C \cdot N \approx N.$$

Implications: when  $||F - P_N||_{L^{\infty}(\Gamma)}$  decays quickly

Therefore, when  $\|(V^{(N)})^{-1}\|_2 \lesssim \frac{1}{u}$ , the monomial approximation error satisfies

$$\|F-\widehat{P}_N\|_{L^{\infty}(\Gamma)} \lesssim \|F-P_N\|_{L^{\infty}(\Gamma)} + u \cdot N.$$

The extra error is around machine epsilon in this case!

# Visualization: when $\|F - P_N\|_{L^{\infty}(\Gamma)}$ decays quickly



# Visualization: when $\|F - P_N\|_{L^{\infty}(\Gamma)}$ decays quickly



# Examples: when $||F - P_N||_{L^{\infty}(\Gamma)}$ decays quickly

$$F(x) = \cos(2x + 1)$$



# Examples: when $||F - P_N||_{L^{\infty}(\Gamma)}$ decays quickly

$$F(x) = \frac{1}{x - \sqrt{2}}$$



Implications: when  $\|F - P_N\|_{L^{\infty}(\Gamma)}$  decays slowly

When  $||F - P_n||_{L^{\infty}(\Gamma)} \lesssim \rho_*^{-n}$  for  $0 \le n \le N$ ,

- the growth of  $||a^{(N)}||_2$  is suppressed,
- and one loses nothing by using the monomial basis.

## Implications: when $||F - P_N||_{L^{\infty}(\Gamma)}$ decays slowly

When  $||F - P_n||_{L^{\infty}(\Gamma)} \lesssim \rho_*^{-n}$  for  $0 \leq n \leq N$ ,

- the growth of  $||a^{(N)}||_2$  is suppressed,
- and one loses nothing by using the monomial basis.

What happens if the polynomial interpolation error decays more slowly?

## Implications: when $||F - P_N||_{L^{\infty}(\Gamma)}$ decays slowly

When  $||F - P_n||_{L^{\infty}(\Gamma)} \lesssim \rho_*^{-n}$  for  $0 \le n \le N$ ,

- the growth of  $||a^{(N)}||_2$  is suppressed,
- and one loses nothing by using the monomial basis.

What happens if the polynomial interpolation error decays more slowly?

- $||a^{(N)}||_2$  will be larger.
- extra error caused by the monomial basis becomes non-negligible.

## Implications: when $||F - P_N||_{L^{\infty}(\Gamma)}$ decays slowly

When  $||F - P_n||_{L^{\infty}(\Gamma)} \lesssim \rho_*^{-n}$  for  $0 \le n \le N$ ,

- the growth of  $||a^{(N)}||_2$  is suppressed,
- and one loses nothing by using the monomial basis.

What happens if the polynomial interpolation error decays more slowly?

- $||a^{(N)}||_2$  will be larger.
- extra error caused by the monomial basis becomes non-negligible.

Does it matter?

# Examples: when $||F - P_N||_{L^{\infty}(\Gamma)}$ decays slowly

$$F(x) = \cos(120x + 1)$$



# Examples: when $||F - P_N||_{L^{\infty}(\Gamma)}$ decays slowly



# Examples: when $||F - P_N||_{L^{\infty}(\Gamma)}$ decays slowly

$$F(x) = \frac{1}{x - 0.5i}$$



Implications: when  $||F - P_N||_{L^{\infty}(\Gamma)}$  decays slowly

I'll now characterize what we just observed.

Assume that  $\|F - P_n\|_{L^{\infty}(\Gamma)}$  decays to the value  $\|F - P_N\|_{L^{\infty}(\Gamma)}$  at a rate slower than  $\rho_*^{-n}$ , i.e.,

$$||F - P_n||_{L^{\infty}(\Gamma)} \le \rho_*^{N-n} ||F - P_N||_{L^{\infty}(\Gamma)}, \quad \text{for } 0 \le n \le N.$$

## Visualizations: when $||F - P_N||_{L^{\infty}(\Gamma)}$ decays slowly



# Visualizations: when $\|F - P_N\|_{L^{\infty}(\Gamma)}$ decays slowly

$$\|F-P_n\|_{L^\infty(\Gamma)} \leq \rho_*^{N-n} \|F-P_N\|_{L^\infty(\Gamma)}, \quad \text{for } 0 \leq n \leq N.$$



## Visualizations: when $||F - P_N||_{L^{\infty}(\Gamma)}$ decays slowly

$$\|F - P_n\|_{L^{\infty}(\Gamma)} \le \rho_*^{N-n} \|F - P_N\|_{L^{\infty}(\Gamma)}, \quad \text{for } 0 \le n \le N.$$



## Visualizations: when $||F - P_N||_{L^{\infty}(\Gamma)}$ decays slowly

$$||F - P_n||_{L^{\infty}(\Gamma)} \le \rho_*^{N-n} ||F - P_N||_{L^{\infty}(\Gamma)}, \quad \text{for } 0 \le n \le N.$$



Implications: when  $\|F - P_N\|_{L^{\infty}(\Gamma)}$  decays slowly

#### **Theorem**

Under this assumption, the monomial approximation error satisfies

$$\|F-\widehat{P}_N\|_{L^{\infty}(\Gamma)}\lesssim 2\|F-P_N\|_{L^{\infty}(\Gamma)},$$

so long as  $\|(V^{(N)})^{-1}\|_2 \lesssim \frac{1}{u}$ .

The proof is similar to the previous case.

### Implications: stagnation of convergence

We've shown that if  $||F - P_n||_{L^{\infty}(\Gamma)}$ 

- decays at a rate **faster** than  $\rho_*^{-n}$ ,
- ullet or decays at a rate **slower** than  $ho_*^{-n}$ ,

then the monomial basis = a well-conditioned basis when the order  $\leq$  threshold.

### Implications: stagnation of convergence

We've shown that if  $||F - P_n||_{L^{\infty}(\Gamma)}$ 

- decays at a rate **faster** than  $\rho_*^{-n}$ ,
- ullet or decays at a rate **slower** than  $ho_*^{-n}$ ,

then the monomial basis = a well-conditioned basis when the order  $\leq$  threshold.

The only way for stagnation to happen before the order reaches the threshold is that,  $\|F - P_n\|_{L^{\infty}(\Gamma)}$  first decays at a rate **slower** than  $\rho_*^{-n}$ , then starts to decay at a rate **faster** than  $\rho_*^{-n}$ .

### Examples: stagnation of convergence



### Examples



### **Examples**



### Examples



- Extremely high-order interpolation is impossible due to the precondition  $\|(V^{(N)})^{-1}\|_2 \lesssim \frac{1}{\mu}$ .
- So **global** interpolation won't work.

On the other hand, **piecewise** polynomial interpolation in the monomial basis over a partition of  $\Gamma$  can be carried out stably, provided that

 the maximum order of approximation over each subpanel is maintained below the threshold;

On the other hand, **piecewise** polynomial interpolation in the monomial basis over a partition of  $\Gamma$  can be carried out stably, provided that

 the maximum order of approximation over each subpanel is maintained below the threshold;

Fine. The threshold isn't small and can be estimated easily.

- the maximum order of approximation over each subpanel is maintained below the threshold;
  - Fine. The threshold isn't small and can be estimated easily.
- ② the size of  $u \cdot \|a^{(N)}\|_2$  is kept below the size of  $\|F P_N\|_{L^{\infty}(\Gamma)}$ .

- the maximum order of approximation over each subpanel is maintained below the threshold;
  - Fine. The threshold isn't small and can be estimated easily.
- ② the size of  $u \cdot ||a^{(N)}||_2$  is kept below the size of  $||F P_N||_{L^{\infty}(\Gamma)}$ .
  - 1. Often satisfied automatically. If not, adding an extra level of subdivision almost always resolves the issue. Reducing the maximum order also helps.

- the maximum order of approximation over each subpanel is maintained below the threshold;
  - Fine. The threshold isn't small and can be estimated easily.
- ② the size of  $u \cdot ||a^{(N)}||_2$  is kept below the size of  $||F P_N||_{L^{\infty}(\Gamma)}$ .
  - 1. Often satisfied automatically. If not, adding an extra level of subdivision almost always resolves the issue. Reducing the maximum order also helps.
  - 2. Even easier when high accuracy is not required.

- the maximum order of approximation over each subpanel is maintained below the threshold;
  - Fine. The threshold isn't small and can be estimated easily.
- ② the size of  $u \cdot ||a^{(N)}||_2$  is kept below the size of  $||F P_N||_{L^{\infty}(\Gamma)}$ .
  - 1. Often satisfied automatically. If not, adding an extra level of subdivision almost always resolves the issue. Reducing the maximum order also helps.
  - 2. Even easier when high accuracy is not required.
  - 3.  $u \cdot ||a^{(N)}||_2$  can be easily estimated a posteriori.

On the other hand, **piecewise** polynomial interpolation in the monomial basis over a partition of  $\Gamma$  can be carried out stably, provided that

- the maximum order of approximation over each subpanel is maintained below the threshold;
  - Fine. The threshold isn't small and can be estimated easily.
- ② the size of  $u \cdot \|a^{(N)}\|_2$  is kept below the size of  $\|F P_N\|_{L^{\infty}(\Gamma)}$ .
  - 1. Often satisfied automatically. If not, adding an extra level of subdivision almost always resolves the issue. Reducing the maximum order also helps.
  - 2. Even easier when high accuracy is not required.
  - 3.  $u \cdot ||a^{(N)}||_2$  can be easily estimated a posteriori.

The convergence rate of piecewise polynomial approximation is  $\mathcal{O}(h^{N+1})$ .

#### Conclusions

There are many other applications of this work (see our paper).

This paper is not only about monomials. It characterizes the universal behavior of function approximation with any ill-conditioned basis before the condition number reaches 1/u.

Paper & slides are available on my personal website (https://zewenshen.github.io).

Thank you for listening!

### Bonus

- The Vandermonde system is dense.
- Backward stable linear system solve generally takes  $\mathcal{O}(N^3)$  operations.

- The Vandermonde system is dense.
- ullet Backward stable linear system solve generally takes  $\mathcal{O}(\mathit{N}^3)$  operations.

#### Not a problem.

• The size of the Vandermonde matrix is not large ( $\lesssim$  50 in 1-D).

- The Vandermonde system is dense.
- ullet Backward stable linear system solve generally takes  $\mathcal{O}(\mathit{N}^3)$  operations.

#### Not a problem.

- The size of the Vandermonde matrix is not large ( $\leq$  50 in 1-D).
- Highly optimized linear algebra libraries, e.g., LAPACK.

- The Vandermonde system is dense.
- ullet Backward stable linear system solve generally takes  $\mathcal{O}(\mathit{N}^3)$  operations.

#### Not a problem.

- The size of the Vandermonde matrix is not large ( $\lesssim$  50 in 1-D).
- Highly optimized linear algebra libraries, e.g., LAPACK.
- $\mathcal{O}(N^2)$  algorithms exist (could be less backward stable).

### Generalization to higher dimensions

In 2-D, the Vandermonde matrix looks like

$$V^{(N)} := \begin{pmatrix} 1 & x_1 & y_1 & x_1^2 & x_1y_1 & \cdots & y_1^N \\ 1 & x_2 & y_2 & x_2^2 & x_2y_2 & \cdots & y_2^N \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{\widetilde{N}} & y_{\widetilde{N}} & x_{\widetilde{N}}^2 & x_{\widetilde{N}}y_{\widetilde{N}} & \cdots & y_{\widetilde{N}}^N \end{pmatrix},$$

where  $\widetilde{N}$  is the dimensionality of bivariate polynomials of order up to N.

Collocation points with relatively small Lebesgue constants have been constructed (Vioreanu & Rokhlin 2014).

The theory of monomial approximation is essentially same as 1-D.









I'll show some experiments that compares the monomial basis with the Koornwinder polynomial basis over the blue triangle.

$$F(x,y) = e^{-(x^2+y^2)/4}$$



$$F(x,y) = \sin(xy/2 + x + y)$$



$$F(x, y) = \arctan(x) \cdot \arctan(y)$$



$$F(x,y) = |x+y|^{5.5}$$



### Bonus: what happens when the order > the threshold?

cos(12x + 1), MATLAB's backslash

### Bonus: what happens when the order > the threshold?



