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Oscillatory integrals

Let ω ∈ R, and let F : [−1, 1]→ R be a smooth function.∫ 1

−1
e iωxF (x) dx

It requires O(ω) operations to compute this integral by using standard
quadrature rules.

∫ 1

−1
e iωx dx =

1

iω
(e iω − e−iω)∫ 1

−1
e iωxxk+1 dx =

1

iω

(
e iω + (−1)ke−iω − (k + 1)

∫ 1

−1
e iωxxk dx

)
If the function F is approximated by a monomial expansion, the
computational cost is independent of ω.
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Singular integrals (Helsing & Ojala 2008)

Let Γ ⊂ C be a smooth curve. Given an analytic function F : Γ→ C and
a point ξ ∈ C close to Γ, ∫

Γ

F (z)

z − ξ
dz

is costly to evaluate using adaptive integration.

∫
Γ

1

z − ξ
dz = log(z1 − ξ)− log(z0 − ξ) + 2πiNξ∫

Γ

zk

z − ξ
dz =

1− (−1)k−1

k − 1
+ ξ

∫
Γ

zk−1

z − x
dz
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Hadamard finite-part integral

Given ν ∈ R and M ∈ N≥0, we’re interested in the calculation of the
Hadamard finite-part integral

f.p.

∫ 1

0
xν logm(x) · F (x) dx .

f.p.

∫ 1

0
xν logm(x) · xk dx =

(−1)mm!

(ν + k + 1)m+1
.
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Particular solution to Poisson’s equation

Given a domain Ω ∈ R2, and a function F : Ω→ R, find a solution to

∇2u = F .

For all m ≥ 0,

∇−2[xm] =
1

(m + 1)(m + 2)
xm+2, ∇−2[xmy ] =

1

(m + 1)(m + 2)
xm+2y .

For all n ≥ 0,

∇−2[yn] =
1

(n + 1)(n + 2)
yn+2, ∇−2[xyn] =

1

(n + 1)(n + 2)
xyn+2.

When F = xmyn for some m ≥ 2, n ≥ 2,

∇−2[xmyn] =
xm+2yn

(m + 2)(m + 1)
− n(n − 1)

(m + 2)(m + 1)
∇−2[xm+2yn−2]

=
xmyn+2

(n + 2)(n + 1)
− m(m − 1)

(n + 2)(n + 1)
∇−2[xm−2yn+2]
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Motivations

How to approximate functions by monomials?

General attitude has remained skeptical.
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Polynomial interpolation

Polynomials are powerful tools for approximating functions.

Definition

Given a function F : [−1, 1]→ C, the Nth degree interpolating polynomial
PN of F satisfies PN(xj) = F (xj), for a set of (N + 1) distinct collocation
points {xj}j=0,1,...,N .

The choice of collocation points is important for good approximation
quality.
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Polynomial interpolation

Polynomial interpolation can be viewed as a linear operator from(
F (x0),F (x1), . . . ,F (xN)

)
to the interpolating polynomial PN .

The Lebesgue constant ΛN for {xj}j=0,1,...,N is the (`∞, L∞([−1, 1]))
norm of this linear operator.

‖F − PN‖L∞([−1,1]) ≤ (1 + ΛN) · infp∈PN
‖F − p‖L∞([−1,1]).

We’ll choose collocation points with small ΛN .
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Polynomial interpolation in finite precision

To compute PN on a computer, we first choose a polynomial basis {φk}k

PN(x) =
N∑

k=0

akφk(x)


φ0(x0) φ1(x0) φ2(x0) · · · φN(x0)
φ0(x1) φ1(x1) φ2(x1) · · · φN(x1)

...
...

...
. . .

...
φ0(xN) φ1(xN) φ2(xN) · · · φN(xN)



a0

a1
...
aN

 =


F (x0)
F (x1)

...
F (xN)

 .

Why does the choice of basis matter?

Condition number

Time complexity

The standard choices:

Lagrange polynomials.

Orthogonal polynomials (Chebyshev, Legendre, etc).
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Polynomial interpolation in the monomial basis

What about expressing PN in the monomial basis?

PN(x) =
N∑

k=0

akx
k

The previous linear system becomes
1 x0 x2

0 · · · xN0
1 x1 x2

1 · · · xN1
...

...
...

. . .
...

1 xN x2
N · · · xNN


︸ ︷︷ ︸

V (N)


a0

a1
...
aN


︸ ︷︷ ︸

a(N)

=


F (x0)
F (x1)

...
F (xN)


︸ ︷︷ ︸

f (N)

.

V (N) is known as a Vandermonde matrix.



Monomial basis is ill-conditioned

Given any set of real collocation points, κ(V (N)) grows at least
exponentially fast.

Example: when the Chebyshev points are used for collocation:



Numerical experiments

Let’s run some experiments. The following quantities will be reported.

‖F − P̂N‖L∞([−1,1]): Monomial approximation error.
Denoted by the label “monomial”.

‖F − PN‖L∞([−1,1]): Exact polynomial interpolation error, estimated
using the Barycentric interpolation formula.
Denoted by the label “Lagrange”.

Chebyshev points are used for collocation.



Numerical experiments

F (x) = cos(2x + 1)
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Numerical experiments

F (x) = e−2(x+0.1)2
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Numerical experiments

F (x) = cos(8x + 1)



Numerical experiments

F (x) = cos(12x + 1)



Numerical experiments

F (x) = 1
x−
√

2



Numerical experiments

F (x) = 1
x−0.5i



Numerical experiments

F (x) = |x |2.5



Reflections

Polynomial interpolation in the monomial basis is not as unstable as
it appears.

The same thing happens when the domain is not [−1, 1] (say, a
smooth simple arc Γ ⊂ C, a triangle in R2).

The observation that “the monomials can approximate sufficiently
smooth functions to high accuracy” dates back to ≥ 25 years ago.

Not very widely known. Not fully understood. Not the complete story.

The monomial basis is not too different from a well-conditioned
polynomial basis for interpolation, provided that κ(V (N)) ≤ 1

u .

Before I explain why, I’ll present my favorite application.
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Monomial as the default choice for interpolation

Well-conditioned polynomial bases for irregular domains are generally
either unknown or complicated.

What are orthogonal polynomials over an arbitrary curved triangle?

Orthogonal polynomials over a standard simplex:

Kmn(x , y) = (1− x)m · P(2m+1,0)
n−m (2x − 1) · Pm

( 2y

1− x
− 1
)
.

On the other hand, this is what a monomial look like:

xmyn.

Works for any domain. Much more handy. Much cheaper to evaluate.
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Assumptions

In the rest of the talk, here’s a list of our assumptions:

The domain of approximation Γ ⊂ C can be an arbitrary smooth
simple arc.

Γ is inside the unit disk D1 centered at the origin.

The Lebesgue constant ΛN of the collocation points is small.

Feel free to consider Γ = [−1, 1] with Chebyshev points.



Rethinking interpolation

Huge condition number of Vandermonde matrices
=⇒

extremely inaccurate monomial coefficients

Do we care about the accuracy of the computed monomial coefficients?

What’s really important is the backward error, i.e.,

‖V (N)â(N) − f (N)‖2,

of the numerical solution â(N) to the Vandermonde system
V (N)a(N) = f (N).
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Rethinking interpolation

The difference between the exact interpolating polynomial PN and the
computed monomial expansion P̂N satisfies

‖PN − P̂N‖L∞(Γ) ≤ ΛN‖V (N)â(N) − f (N)‖2.

How large will the backward error be?
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Backward stable linear system solver

When a backward stable linear system solver is used to solve the
Vandermonde system V (N)a(N) = f (N), the numerical solution â(N) is the
exact solution to (

V (N) + δV (N)
)
â(N) = f (N),

for some δV (N) ∈ C(N+1)×(N+1) that satisfies

‖δV (N)‖2 ≤ u · γN ,

where u denotes machine epsilon and γN = O(‖V (N)‖2).

Remark: ‖V (N)‖2 is small when Γ ⊂ D1. When MATLAB’s backslash is
used, we observe that γN . 1 for at least N ≤ 100.

It follows that

‖V (N)â(N) − f (N)‖2 = ‖δV (N)â(N)‖2 ≤ u · γN‖â(N)‖2.
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Vandermonde system V (N)a(N) = f (N), the numerical solution â(N) is the
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)
â(N) = f (N),

for some δV (N) ∈ C(N+1)×(N+1) that satisfies
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Monomial approximation error

We’ve shown that

‖PN − P̂N‖L∞(Γ) ≤ ΛN‖V (N)â(N) − f (N)‖2,

and that

‖(V (N))−1‖2 ≤
1

2u · γN
=⇒

∥∥V (N)â(N) − f (N)
∥∥

2
≤ 2u · γN‖a(N)‖2.

Assume that ‖(V (N))−1‖2 ≤
1

2u·γN . By the triangle inequality, the
monomial approximation error satisfies

‖F − P̂N‖L∞(Γ) ≤‖F − PN‖L∞(Γ) + ‖PN − P̂N‖L∞(Γ)

≤‖F − PN‖L∞(Γ) + ΛN‖V (N)â(N) − f (N)‖2

≤‖F − PN‖L∞(Γ) + 2u · γNΛN‖a(N)‖2.

Extra additive error term ≈ u · ‖a(N)‖2.
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∥∥V (N)â(N) − f (N)
∥∥

2
≤ 2u · γN‖a(N)‖2.

Assume that ‖(V (N))−1‖2 ≤
1

2u·γN . By the triangle inequality, the
monomial approximation error satisfies

‖F − P̂N‖L∞(Γ) ≤‖F − PN‖L∞(Γ) + ‖PN − P̂N‖L∞(Γ)

≤‖F − PN‖L∞(Γ) + ΛN‖V (N)â(N) − f (N)‖2
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Numerical experiments

F (x) = cos(2x + 1)



Numerical experiments

F (x) = 1
x−
√
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Numerical experiments

F (x) = cos(8x + 1)



Numerical experiments

F (x) = cos(12x + 1)



Numerical experiments

F (x) = 1
x−0.5i



Numerical experiments

F (x) = |x |2.5



Story so far

We can now explain these experiments, but many things are still
unclear.

For example, when will the extra error (i.e., u · ‖a(N)‖2) be small?

This requires an a priori estimate for the growth of ‖a(N)‖2.

Remark: The literature sometimes cites backward stability as the only
justification for the use of the monomial basis, which is somewhat
misguided.
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Monomial coefficients of PN

Lemma

Let PN : C→ C be a polynomial of degree N, where PN(z) =
∑N

k=0 akz
k

for some a0, a1, . . . , aN ∈ C. The 2-norm of the coefficient vector
a(N) := (a0, a1, . . . , aN)T satisfies

‖a(N)‖2 ≤ ‖PN‖L∞(∂D1),

where D1 denotes the open unit disk centered at the origin.

Proof.

Observe that PN(e iθ) =
∑N

k=0 ake
ikθ. Thus, by Parseval’s identity, we

have that ‖a(N)‖2 =
(

1
2π

∫ 2π
0 |PN(e iθ)|2 dθ

)1/2
≤ ‖PN‖L∞(∂D1).

Very tight bound, but relies on knowledge of ‖PN‖L∞(∂D1).
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Bernstein ellipse

Given ρ > 1, the Bernstein ellipse Eρ for Γ = [−1, 1] is the image of a
circle centered at the origin with radius ρ under the mapping 1

2 (z + 1
z ).

The larger ρ, the bigger the ellipse.

We let E o
ρ denote the open region bounded by Eρ.



Generalization of Bernstein ellipse

The concept of the Bernstein ellipse can be generalized to an arbitrary
smooth simple arc Γ ⊂ C.



Bernstein’s inequality

Lemma (Walsh 1935)

Let Γ be a smooth simple arc in the complex plane, and let E o
ρ be the

region corresponding to Γ with some parameter ρ > 1. Then, the L∞

norm of any polynomial PN of degree N over E o
ρ satisfies

‖PN‖L∞(Eo
ρ ) ≤ ρ

N‖PN‖L∞(Γ).

Define ρ∗ = min{ρ > 1 : D1 ⊂ E o
ρ }. Then,

‖a(N)‖2 ≤ ‖PN‖L∞(∂D1) ≤ ‖PN‖L∞(Eo
ρ∗ ) ≤ ρ

N
∗ ‖PN‖L∞(Γ).
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Examples of ρ∗

Example

When Γ = [−1, 1], ρ∗ = 1 +
√

2 ≈ 2.4



Examples of ρ∗

Example

When Γ = [0, 1], ρ∗ = 3 + 2
√

2 ≈ 5.8



An upper bound for ‖(V (N))−1‖2

We’ve shown that
‖a(N)‖2

‖PN‖L∞(Γ)

≤ ρN∗ .

Also note that

‖(V (N))−1‖2 = sup
f (N) 6=0

{‖(V (N))−1f (N)‖2

‖f (N)‖2

}
= sup

f (N) 6=0

{‖a(N)‖2

‖f (N)‖2

}
.

Theorem (Shen & Serkh (2022))

Suppose that V (N) ∈ C(N+1)×(N+1) is a Vandermonde matrix with
(N + 1) distinct collocation points over Γ ⊂ C. Then,

‖(V (N))−1‖2 ≤ ρ
N
∗ ΛN .
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2, Chebyshev points



An upper bound for ‖(V (N))−1‖2

Γ = [0, 1], ρ∗ = 3 + 2
√

2, Chebyshev points



An upper bound for ‖a(N)‖2

Theorem (Shen & Serkh (2022))

Suppose that there exists a finite sequence of polynomials {Qn}n=0,1,...,N ,
where Qn has degree n, which satisfies

‖F − Qn‖L∞(Γ) ≤ Cρ−n, 0 ≤ n ≤ N,

for some constants ρ > 1 and C ≥ 0. The 2-norm of the monomial
coefficient vector of the Nth degree interpolating polynomial PN of F
satisfies

‖a(N)‖2 ≤ ‖F‖L∞(Γ) + C
(

ΛN

(ρ∗
ρ

)N
+ 2ρ∗

N−1∑
j=0

(ρ∗
ρ

)j
+ 1
)
.



A simplified upper bound for ‖a(N)‖2

We fix the variable ρ to be ρ∗. The previous theorem becomes:

‖F − Qn‖L∞(Γ) ≤ Cρ−n∗ , 0 ≤ n ≤ N,

=⇒

‖a(N)‖2 ≤ ‖F‖L∞(Γ) + C
(

ΛN

(ρ∗
ρ∗

)N
+ 2ρ∗

N−1∑
j=0

(ρ∗
ρ∗

)j
+ 1
)

. C · N.

In practice, one can take {Qn}n=0,1,...,N to be a finite sequence of
interpolating polynomials {Pn}n=0,1,...,N of F .

We first deal with the case where the ‖F − Pn‖L∞(Γ) . ρ−n∗ .

‖a(N)‖2 . C · N ≈ N.
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Implications: when ‖F − PN‖L∞(Γ) decays quickly

Therefore, when ‖(V (N))−1‖2 . 1
u , the monomial approximation error

satisfies
‖F − P̂N‖L∞(Γ) . ‖F − PN‖L∞(Γ) + u · N.

The extra error is around machine epsilon in this case!



Visualization: when ‖F − PN‖L∞(Γ) decays quickly
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Implications: when ‖F − PN‖L∞(Γ) decays quickly

Recall that ‖(V (N))−1‖2 ≤ ρN∗ ΛN .

When N satisfies ρ−N∗ = u, ‖(V (N))−1‖2 ≤
ΛN
u . 1

u .

The threshold will always be on the right of this pink region.
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Examples: when ‖F − PN‖L∞(Γ) decays quickly

F (x) = cos(2x + 1)
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F (x) = 1
x−
√

2



Implications: when ‖F − PN‖L∞(Γ) decays slowly

When ‖F − Pn‖L∞(Γ) . ρ−n∗ for 0 ≤ n ≤ N,

the growth of ‖a(N)‖2 is suppressed,

and one loses nothing by using the monomial basis.

What happens if the polynomial interpolation error decays more slowly?

‖a(N)‖2 will be larger.

extra error caused by the monomial basis becomes non-negligible.

Does it matter?
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F (x) = cos(120x + 1)



Examples: when ‖F − PN‖L∞(Γ) decays slowly

F (x) = |x |5/2



Examples: when ‖F − PN‖L∞(Γ) decays slowly

F (x) = 1
x−0.5i



Implications: when ‖F − PN‖L∞(Γ) decays slowly

I’ll now characterize what we just observed.

Assume that ‖F − Pn‖L∞(Γ) decays to the value ‖F − PN‖L∞(Γ) at a rate

slower than ρ−n∗ , i.e.,

‖F − Pn‖L∞(Γ) ≤ ρ
N−n
∗ ‖F − PN‖L∞(Γ), for 0 ≤ n ≤ N.
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Recall that
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Implications: when ‖F − PN‖L∞(Γ) decays slowly

We’ve shown that ‖a(N)‖2 . NρN∗ ‖F − PN‖L∞(Γ) in this case.

When ‖(V (N))−1‖2 . 1
u , the monomial approximation error satisfies

‖F − P̂N‖L∞(Γ) . ‖F − PN‖L∞(Γ) + u · ‖a(N)‖2

. ‖F − PN‖L∞(Γ) + u · NρN∗ ‖F − PN‖L∞(Γ)

= (1 + u · NρN∗ )‖F − PN‖L∞(Γ).

When NρN∗ ≤ 1
u , we have that ‖F − P̂N‖L∞(Γ) . 2‖F − PN‖L∞(Γ).

Recall that ‖(V (N))−1‖2 ≈ ρN∗ . So NρN∗ ≤ 1
u generally holds when

‖(V (N))−1‖2 ≤
1
u .
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Implications: stagnation of convergence

We’ve shown that if ‖F − Pn‖L∞(Γ)

decays at a rate faster than ρ−n∗ ,

or decays at a rate slower than ρ−n∗ ,

then the monomial basis = a well-conditioned basis when the
order ≤ threshold.

The only way for stagnation to happen before the order reaches the
threshold is that, ‖F − Pn‖L∞(Γ) first decays at a rate slower than ρ−n∗ ,

then starts to decay at a rate faster than ρ−n∗ .



Implications: stagnation of convergence

We’ve shown that if ‖F − Pn‖L∞(Γ)

decays at a rate faster than ρ−n∗ ,

or decays at a rate slower than ρ−n∗ ,

then the monomial basis = a well-conditioned basis when the
order ≤ threshold.

The only way for stagnation to happen before the order reaches the
threshold is that, ‖F − Pn‖L∞(Γ) first decays at a rate slower than ρ−n∗ ,

then starts to decay at a rate faster than ρ−n∗ .



Examples: stagnation of convergence

F (x) = cos(12x + 1)
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F (x) = T20(x)
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Implications: stagnation of convergence

In practice, the interpolation error typically doesn’t drop like crazy
after decaying slowly.

So stagnation of convergence typically only occurs when N is close to
the threshold value.
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How restrictive is the monomial basis?

Extremely high-order interpolation is impossible due to the
precondition ‖(V (N))−1‖2 . 1

u .

So global interpolation won’t work.



How restrictive is the monomial basis?

On the other hand, piecewise polynomial interpolation in the monomial
basis over a partition of Γ can be carried out stably, provided that

1 the maximum order of approximation over each subpanel is
maintained below the threshold;

Fine. The threshold isn’t small and can be estimated easily.

2 the size of u · ‖a(N)‖2 is kept below the size of ‖F − PN‖L∞(Γ).
1. Often satisfied automatically. If not, adding an extra level of
subdivision almost always resolves the issue. Reducing the maximum
order also helps.
2. Even easier when high accuracy is not required.
3. u · ‖a(N)‖2 can be easily estimated a posteriori.

The convergence rate of piecewise polynomial approximation is O(hN+1).

Rapid evaluations (short expansion, Estrin’s scheme).
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How restrictive is the monomial basis?

The Vandermonde system is dense.

Backward stable linear system solve generally takes O(N3) operations.

Not a problem.

The size of the Vandermonde matrix is not large (. 50 in 1-D).

Highly optimized linear algebra libraries, e.g., LAPACK.

When the domain is fixed, only need to factorize the matrix once.

O(N2) algorithms exist (could be less backward stable).
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When Γ ⊂ C is a smooth simple arc

One can approximate an analytic function F : Γ→ C by polynomials
in the monomial basis.

Key component in some of the layer potential evaluation algorithms
(Helsing & Ojala 2008, af Klinteberg & Barnett 2021).

The threshold ≈ 37 when Γ is a parabola.

See our paper for experiments.



When Γ ⊂ C is a smooth simple arc

One can approximate an analytic function F : Γ→ C by polynomials
in the monomial basis.

Key component in some of the layer potential evaluation algorithms
(Helsing & Ojala 2008, af Klinteberg & Barnett 2021).

The threshold ≈ 37 when Γ is a parabola.

See our paper for experiments.



When Γ ⊂ C is a smooth simple arc

One can approximate an analytic function F : Γ→ C by polynomials
in the monomial basis.

Key component in some of the layer potential evaluation algorithms
(Helsing & Ojala 2008, af Klinteberg & Barnett 2021).

The threshold ≈ 37 when Γ is a parabola.

See our paper for experiments.



When Γ ⊂ C is a smooth simple arc

One can approximate an analytic function F : Γ→ C by polynomials
in the monomial basis.

Key component in some of the layer potential evaluation algorithms
(Helsing & Ojala 2008, af Klinteberg & Barnett 2021).

The threshold ≈ 37 when Γ is a parabola.

See our paper for experiments.



Generalization to higher dimensions

In 2-D, the Vandermonde matrix looks like

V (N) :=


1 x1 y1 x2

1 x1y1 · · · yN1
1 x2 y2 x2

2 x2y2 · · · yN2
...

...
...

...
...

. . .
...

1 x
Ñ

y
Ñ

x2
Ñ

x
Ñ
y
Ñ
· · · yN

Ñ

 ,

where Ñ is the dimensionality of bivariate polynomials of order up to N.

Collocation points with relatively small Lebesgue constants have been
constructed (Vioreanu & Rokhlin 2014).

The theory of monomial approximation is essentially same as 1-D.



Numerical experiments

I’ll show some experiments that compares the monomial basis with the
Koornwinder polynomial basis over the blue triangle.
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Numerical experiments

F (x , y) = e−(x2+y2)/4



Numerical experiments

F (x , y) = sin(xy/2 + x + y)



Numerical experiments

F (x , y) = arctan(x) · arctan(y)



Numerical experiments

F (x , y) = |x + y |5.5



Teaser: Newtonian potential evaluation

Given an irregular domain Ω ⊂ R2 and a function F : Ω→ R, we’re
interested in calculating the Newtonian potential

u(x) =

∫∫
Ω

log(‖x − y‖)F (y)dy .

Triangulation.

Approximate F over each mesh element using 2-D monomials.

Compute the anti-Laplacian of the 2-D monomial expansion over each
mesh element.

Apply Green’s third identity =⇒ layer potentials over the boundaries
of the mesh elements.

Z. Shen and K. Serkh. “Rapid evaluation of Newtonian potentials on
planar domains.” arXiv:2208.10443 (2022).
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Numerical experiments

F (x , y) = e−x
2−y2
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Two orders of magnitude faster than adaptive integration.



Conclusions

Polynomial interpolation in the monomial basis is a valuable tool to have
in the numerical toolbox.



Conclusions

An interactive demo:

https://uoft.me/monomial

Paper & slides are available on my personal website
(https://zewenshen.github.io).

https://zewenshen.github.io


Bonus: what happens when the order > the threshold?

cos(12x + 1), MATLAB’s backslash
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