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Learning Objectives

By the end of this talk, participants should be able to:

1 Be more familiar with the development of numerical methods for
PDEs.

2 Understand the workflow of integral equation methods.

3 Know the advantages and disadvantages of integral equation
methods, and use it appropriately in future research.

4 Know a subset of active problems arising from this field.
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Introduction

What are the requirements of numerical methods for PDEs?

Accuracy

Speed

Memory

These requirements don’t hold universally.
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Integral equation formulations of PDEs

Finding a good integral equation formulation requires work.

There exist different integral equation formulations for a same PDE.

What’s the advantage of the formulations?
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Example: Laplace’s equation

Definition

Laplace’s equation with Dirichlet boundary condition

−∇2u(x) = 0 for x ∈ Ω (1)

u(x) = f (x) for x ∈ ∂Ω (2)

We want to find a solution to it that takes the form

u(x) =

∫
∂Ω

d(x , y)σ(y)ds(y), x ∈ Ω,

where d(x , y) is the normal derivative to the Green’s function of Laplace’s
equation at the boundary point y
(d(x , y) = n(y) · ∇yφ(x − y) = n(y)·(x−y)

2π|x−y |2 and n(y) is the unit length

inwards pointing normal to ∂Ω at y ∈ ∂Ω).

Zewen Shen (UToronto) Integral Equation Methods CUMC 2020 5 / 28



Integral equation formulations of Laplace’s equation

We want to find a solution to it that takes the form

u(x) =

∫
∂Ω

d(x , y)σ(y)ds(y), x ∈ Ω

Questions

Q: Why can we assume that the solution is written in this weird
integral form?

Q: Why do we pick this specific kernel function d(x , y) instead of
others?
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Integral equation formulations of Laplace’s equation

We want to find a solution to it that takes the form

u(x) =

∫
∂Ω

d(x , y)σ(y)ds(y), x ∈ Ω

Summary

1 Compute the correct σ such that the integral above matches the
boundary condition.

2 Once σ is known, evaluate the PDE solution u(x) everywhere inside
the domain by computing the line integral.
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Integral equation formulations of Laplace’s equation

How to solve the density function σ(y) defined on the boundary?

Apply the boundary condition: u(x) = f (x) for x ∈ ∂Ω,

or more rigorously: limx ′→x ,x ′∈Ω u(x ′) = f (x) for x ∈ ∂Ω

Remarks

Our kernel function d(x , y) has a singularity as x → y , which leads to an extra
term as we take the limit

lim
x′→x,x′∈Ω

u(x ′) = −1

2
σ(x) +

∫
∂Ω

d(x , y)σ(y)ds(y).

Therefore, we got the integral equation that σ(x) satisfies:

−1

2
σ(x) +

∫
∂Ω

d(x , y)σ(y)ds(y) = f (x), x ∈ ∂Ω.
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Integral equation formulations of Laplace’s equation

References
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Discretization of the integral equation

The density function σ(x) satisfies a Fredholm integral equation of second
kind:

−1

2
σ(x) +

∫
∂Ω

d(x , y)σ(y)ds(y) = f (x), x ∈ ∂Ω.

We discretize the integral equation by replacing the integral with a
representative weighted sum, i.e., a selected quadrature rule:∫

∂Ω
φ(y)ds(y) =

N∑
j=1

wjφ(xj), for a certain class of φ.

Then the discretized integral equation becomes a N × N linear system

−1

2
σ(xi ) +

N∑
j=1

wjd(xi , xj)σ(xj) = f (xi ), i = 1, 2, . . . ,N.
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Discretization of the integral equation

Examples of common quadrature rules

Trapezoidal rule: Converge super-algebraically when the boundary
condition f is C∞ and periodic, plus the boundary of the domain is
smooth. Easy to code.

Composite Gaussian quadrature: Customized convergence rate
depending on the selected order of quadrature. Allows for local
refinement, which is good for domains with corners and edges.

Singular integral quadrature: Necessary when we need to evaluate the
integral of a singular kernel. We don’t need it in our example, but it’s
required for more sophisticated problems, e.g., Helmholtz equation.
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Discretization of the integral equation

To write the discretized integral equation

−1

2
σ(xi ) +

N∑
j=1

wjd(xi , xj)σ(xj) = f (xi )

as a N × N linear system, we define vectors σ, f ∈ Rn via

f (i) =
√
wi f (xi ), σ(i) =

√
wiσ(xi ),

and define matrix A ∈ RN×N via

A(i , j) =
√
wid(xi , xj)

√
wj −

1

2
δi ,j . (3)

Finally, we get a linear system Aσ = f to solve.

Why do we need the
√
w weighting scheme?

Such weighting scheme allows the matrix to capture the L2 behaviour of an
integral operator rather than its pointwise behavior, which leads to a
better-conditioned linear system due to some intrinsic property of our integral
equation.
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Discretization of the integral equation

References
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Fast algorithms for rank-structured matrices

Let’s take a close look at the matrix A where

A(i , j) =
√
wid(xi , xj)

√
wj −

1

2
δi ,j . (4)

Unlike the usual sparse matrices arising from the common numerical PDE
methods, our matrix is dense and rank-structured! This tells us...

Conventional matrix solvers will be slow.

The matrix requires more storage as its columns can’t be stored
sparsely.

Zewen Shen (UToronto) Integral Equation Methods CUMC 2020 14 / 28



Fast algorithms for rank-structured matrices

Let’s take a close look at the matrix A where

A(i , j) =
√
wid(xi , xj)

√
wj −

1

2
δi ,j . (4)

Unlike the usual sparse matrices arising from the common numerical PDE
methods, our matrix is dense and rank-structured! This tells us...

Conventional matrix solvers will be slow.

The matrix requires more storage as its columns can’t be stored
sparsely.

Zewen Shen (UToronto) Integral Equation Methods CUMC 2020 14 / 28



Fast algorithms for rank-structured matrices

Let’s take a close look at the matrix A where

A(i , j) =
√
wid(xi , xj)

√
wj −

1

2
δi ,j . (4)

Unlike the usual sparse matrices arising from the common numerical PDE
methods, our matrix is dense and rank-structured! This tells us...

Conventional matrix solvers will be slow.

The matrix requires more storage as its columns can’t be stored
sparsely.

Zewen Shen (UToronto) Integral Equation Methods CUMC 2020 14 / 28



Rank-structured matrix

What’s special about our matrix

A(i , j) =
√
wid(xi , xj)

√
wj −

1

2
δi ,j ?

Each entry represents an interaction between point xi and xj .

Such interactions decay in magnitude over distances...

Maybe we can set the interaction to 0 if two points are far from each
other enough?

However, while the magnitudes of these interactions decay only slowly, the
amount of information that they carry decays enormously fast. We call
such interaction low-rank.
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Rank-structured matrix

While the magnitudes of these fields decay only slowly, the amount of
information that they carry decays enormously fast. We call such
interaction low-rank.

Definition: Given an error tolerance ε, if A is a m× n low-rank matrix with
numerical rank k, then we have U ∈ Rm×k and V ∈ Rk×n

A ≈ UV ,

and the numerical rank k is the smallest integer such that |A− UV |2 < ε:

numrank(A, ε) = min{k : ∃U ∈ Rm×k ,V ∈ Rk×n, s.t., |A− UV |2 < ε}.

Remarks
The numerical rank of a low rank matrix is usually far lower than the actual rank,
i.e., k << min(m, n).
What happens to the storage? What happens to the matvec operation?
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Low-rank approximation

How do we compute a low-rank approximation of the matrix?

Examples

SVD: Optimal! (by Eckart-Young-Mirsky Theorem) But...

Randomized range finder: Fast. Receiving more and more attentions
nowadays. However, its advantage is not obvious compared to the
next example in our application...

Interpolatory decomposition: Widely used by the integral equation
method researchers! Nearly optimal, reasonably fast, no need to
construct the whole matrix A when integrated into our algorithm (by
exploiting the analytical property of our kernel...)
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Rank-structured matrix and low-rank approximation

References

A. Kloeckner, Tools for Low-Rank Linear Algebra, Fast Algorithms
and Integral Equation Methods, Fall 2019

P.G. Martinsson, Fast Direct Solvers for Elliptic PDEs, SIAM, 2019
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Low-rank approximation of our matrix

Low-rank approximation of the first level (cited from [Gillman, et al])

Final Low-rank approximation (cited from [Gillman, Young, Martinsson])
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Low-rank approximation of our matrix

Final Low-rank approximation (cited from [Gillman, Young, Martinsson])

Time complexity of the factorization: O(Nk2). No need for first
constructing the whole matrix A.

Time complexity of matvec: O(kN).
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Iterative methods for rank-structured matrices

The most classical approach that people used to compute Ax in an
iterative solver is the fast multipole method (one of the top 10 algorithms
in 20th century), which solves N-body problems in O(N) time.

A(i , j) =
√
wid(xi , xj)

√
wj −

1

2
δi ,j

Analytical expansion vs matrix factorization.

Strong admissibility vs weak admissibility.
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Iterative methods for rank-structured matrices

References

A. Gillman, P. Young, P.G. Martinsson, A direct solver with O(N)
complexity for integral equations on one-dimensional domains, Front.
Math. China, 7 (2012), pp. 217–247.

R. Beatson, L. Greengard, A short course on fast multipole methods
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Direct solver for rank-structured matrices

Why do we need a direct solver?

Multiple RHS.

Independent of condition number.

Next question: How to compute the inverse of our factorized matrix?

There’s a name for such factorization...
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Direct solver for rank-structured matrices

Final Low-rank approximation (cited from [Gillman, Young, Martinsson])

Sherman–Morrison-Woodbury formula

Time complexity of computing inverse: O(Nk2)

Time complexity of applying the inverse: O(Nk)
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Direct solver for rank-structured matrices

References

J. Bremer, A. Gillman, P.G. Martinsson, A high-order accurate
accelerated direct solver for acoustic scattering from surfaces, BIT
Numerical Mathematics, 2015

A. Gillman, P. Young, P.G. Martinsson, A direct solver with O(N)
complexity for integral equations on one-dimensional domains, Front.
Math. China, 7 (2012), pp. 217–247.

P.G. Martinsson, Fast Direct Solvers for Elliptic PDEs, SIAM, 2019

Z. Shen, lap2d: A Fast Direct Dense Solver for 2-D Laplace’s
Equation, 2020

Zewen Shen (UToronto) Integral Equation Methods CUMC 2020 25 / 28

https://github.com/ZewenShen/lap2d
https://github.com/ZewenShen/lap2d


Summary

Advantages

High-order convergence rate plus reduction of dimensionality.

Be able to achieve machine precision accuracy.

Works well for exterior problems (acoustics, electromagnetic
scattering).

Capability of exploiting all kinds of analytical properties of PDEs.
Nice combination between analysis and numerical linear algebra!
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Summary

Disadvantages

Harder to code.

Special considerations need to be done when the problem has body
load, singular kernels, a domain with corners, mixed boundary
condition, etc.
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Questions?

Thanks to prof. Kirill Serkh and Xinyue Lu for providing suggestions to
the talk.
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